A Heuristic Search Algorithm for Solving First-Order MDPs

نویسندگان

  • Eldar Karabaev
  • Olga Skvortsova
چکیده

We present a heuristic search algorithm for solving first-order MDPs (FOMDPs). Our approach combines first-order state abstraction that avoids evaluating states individually, and heuristic search that avoids evaluating all states. Firstly, we apply state abstraction directly on the FOMDP avoiding propositionalization. Such kind of abstraction is referred to as firstorder state abstraction. Secondly, guided by an admissible heuristic, the search is restricted only to those states that are reachable from the initial state. We demonstrate the usefullness of the above techniques for solving FOMDPs on a system, referred to as FCPlanner, that entered the probabilistic track of the International Planning Competition (IPC’2004).

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Faster Dynamic Programming for Markov Decision Processes

Markov decision processes (MDPs) are a general framework used in artificial intelligence (AI) to model decision theoretic planning problems. Solving real world MDPs has been a major and challenging research topic in the AI literature, since classical dynamic programming algorithms converge slowly. We discuss two approaches in expediting dynamic programming. The first approach combines heuristic...

متن کامل

Engineering Note FluCaP: A Heuristic Search Planner for First-Order MDPs

We present a heuristic search algorithm for solving first-order Markov Decision Processes (FOMDPs). Our approach combines first-order state abstraction that avoids evaluating states individually, and heuristic search that avoids evaluating all states. Firstly, in contrast to existing systems, which start with propositionalizing the FOMDP and then perform state abstraction on its propositionaliz...

متن کامل

FluCaP: A Heuristic Search Planner for First-Order MDPs

We present a heuristic search algorithm for solving first-order Markov Decision Processes (FOMDPs). Our approach combines first-order state abstraction that avoids evaluating states individually, and heuristic search that avoids evaluating all states. Firstly, in contrast to existing systems, which start with propositionalizing the FOMDP and then perform state abstraction on its propositionaliz...

متن کامل

A Hybrid Modified Meta-heuristic Algorithm for Solving the Traveling Salesman Problem

The traveling salesman problem (TSP) is one of the most important combinational optimization problems that have nowadays received much attention because of its practical applications in industrial and service problems. In this paper, a hybrid two-phase meta-heuristic algorithm called MACSGA used for solving the TSP is presented. At the first stage, the TSP is solved by the modified ant colony s...

متن کامل

Solving Factored MDPs via Non-Homogeneous Partitioning

This paper describes an algorithm for solving large state-space MDPs (represented as factored MDPs) using search by successive refinement in the space of non-homogeneous partitions. Homogeneity is defined in terms of bisimulation and reward equivalence within blocks of a partition. Since homogeneous partitions that define equivalent reduced state-space MDPs can have a large number of blocks, we...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005